library(tidyverse)
library(here)
library(janitor)
library(countrycode)
library(rnaturalearth)
here("src") %>% list.files(pattern = "\\.R$", full.names = TRUE) %>% walk(source)
Assessing species potential
Set up
Pull in FAO data for aquaculture production.
<- read_csv(file.path(rdsi_dir, "raw_data/fao/FAO_fishstat_2020/global_aquaculture_production_1950_2020.csv"))
aquaculture_raw
<-
(aquaculture_prod |>
aquaculture_raw clean_names() |>
select(c(1:7, starts_with("x"))) |>
pivot_longer(names_to = "year", values_to = "production", cols= -c(1:7)) |>
mutate(year = gsub(pattern="x", replacement = "", year)) |>
filter(year %in% c(2015:2020)) |>
group_by(asfis_species_name_2, asfis_species_name_3, environment_name, year) |>
summarise(production = sum(production)) |>
ungroup() |>
filter(environment_name=="Marine" &
!asfis_species_name_3 %in% c("Clams, cockles, arkshells",
"Abalones, winkles, conchs",
"Mussels",
"Oysters",
"Shrimps, prawns",
"Crabs, sea-spiders",
"Freshwater molluscs",
"Squids, cuttlefishes, octopuses",
"Pearls, mother-of-pearl, shells",
"Miscellaneous aquatic plants",
"Scallops, pectens"),
!grepl("seaweeds" , asfis_species_name_3),
!grepl("molluscs|cucumber|invertebrates", asfis_species_name_2)) |>
filter(!asfis_species_name_2 %in% c("Marine fishes nei")) |>
group_by(asfis_species_name_2) |>
summarise(production = mean(production)) |>
arrange(-production) |>
mutate(cum_prop = cumsum(production)/sum(production),
prop = production/sum(production))
)
ggplot(aquaculture_prod |> slice(1:20))+
aes(x = reorder(asfis_species_name_2, cum_prop), y = cum_prop)+
geom_col(fill = "dodgerblue3")+
theme_bw()+
theme(text = element_text(size=8),
axis.text.x = element_text(angle=45, hjust = 1))+
labs(x = "", y = "Prop. global marine finfish aquaculture")
ggsave("explore/cottrell_explore/global_proportion_finfish.jpg", dpi = 600, width = 18, height = 12, units="cm")
#
<-
(aquaculture_country_prod |>
aquaculture_raw clean_names() |>
select(c(1:7, starts_with("x"))) |>
pivot_longer(names_to = "year", values_to = "production", cols= -c(1:7)) |>
mutate(year = gsub(pattern="x", replacement = "", year)) |>
filter(year %in% c(2015:2020)) |>
group_by(country_name, asfis_species_name_2, asfis_species_name_3, environment_name, year) |>
summarise(production = sum(production)) |>
ungroup() |>
filter(environment_name=="Marine" &
!asfis_species_name_3 %in% c("Clams, cockles, arkshells",
"Abalones, winkles, conchs",
"Mussels",
"Oysters",
"Shrimps, prawns",
"Crabs, sea-spiders",
"Freshwater molluscs",
"Squids, cuttlefishes, octopuses",
"Pearls, mother-of-pearl, shells",
"Miscellaneous aquatic plants",
"Scallops, pectens"),
!grepl("seaweeds" , asfis_species_name_3),
!grepl("molluscs|cucumber|invertebrates", asfis_species_name_2)) |>
group_by(country_name, asfis_species_name_2) |>
summarise(production = mean(production)) |>
arrange(-production) |>
filter(!asfis_species_name_2 %in% c("Marine fishes nei")) |>
ungroup() |>
mutate(prop = production/sum(production)) |>
group_by(country_name) |>
nest() |>
mutate(country_production = map(data, ~(sum(.$production)))) |>
unnest(cols = c(data, country_production)) |>
ungroup() |>
arrange(-country_production)
)
<- unique(aquaculture_country_prod$country_name)[1:20]
top_20_countries <- aquaculture_prod |>
top_20_spp slice(1:20) |>
pull(asfis_species_name_2) |>
unique()
ggplot(aquaculture_country_prod |>
filter(country_name %in% top_20_countries &
%in% top_20_spp) |>
asfis_species_name_2 mutate(asfis_species_name_2 = factor(asfis_species_name_2, levels = top_20_spp)))+
aes(x = reorder(asfis_species_name_2, -prop), y = production, fill = country_name)+
geom_col()+
theme_bw()+
theme(text = element_text(size=8),
axis.text.x = element_text(angle=45, hjust = 1),
legend.key.size = unit(0.4, "cm"))+
labs(x = "", y = "Prop. global marine finfish aquaculture", fill = "")
ggsave("explore/cottrell_explore/global_proportion_finfish_by_country.jpg", dpi = 600, width = 18, height = 12, units="cm")
|> filter(grepl("rouper", asfis_species_name_2)) aquaculture_prod
Species decided on:
Common name | Scientific name |
---|---|
Atlantic salmon | Salmo salar |
Other salmonids | Generalised multi-species model - incl. Oncorhynchus mykiss and Oncorhynchus kisutch (Coho) |
European seabass | Dicentrarchus labrax |
Gilthead seabream | Sparus aurata |
Large Yellow Croaker | Larimichthys crocea |
Japanese seabass | Lateolabrax japonicus |
Japanese amberjack | Seriola quinqueradiata |
Groupers | Generalised mutli-species model |
Pompano | Trachinotus blochii |
Milkfish | Chanos chanos |